skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kaliki, Rahul R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Problem StatementDespite the recent advancements in technology, many individuals with upper-limb loss struggle to achieve stable control over multiple degrees of freedom in a prosthesis. There is an ongoing need to develop noninvasive prosthesis control modalities that could improve functional patient outcomes. Proposed SolutionUltrasound-based sensing of muscle deformation, known as sonomyography, is an emerging sensing modality for upper-limb prosthesis control with the potential to significantly improve functionality. Sonomyography enables spatiotemporal characterization of both superficial and deep muscle activity, making it possible to distinguish the contributions of individual muscles during functional movements and derive a large set of independent prosthesis control signals. Using sonomyography to control a prosthesis has shown great promise in the research literature but has not yet been fully adapted for clinical use. This article describes the implementation of sonomyography for upper-limb prosthesis control, ongoing technological development, considerations for deploying this technology in clinical settings, and recommendations for future study. Clinical RelevanceSonomyography may soon become a clinically viable modality for upper-limb prosthesis control that could offer prosthetists an additional solution when selecting optimal treatment plans for their patients. 
    more » « less